Solution Stoichiometry

300 mL of 0.2 M KOH is poured into a beaker of 500 mL of 0.1 M HCl .
§ Write the equation, determine the limiting reactant.
Write the equation, determine the limiting reactant. \sim Write the equation. Make an ISE table.

$$
\begin{aligned}
& n=\frac{m o l}{L} \mathrm{KOH} \\
& 0.2 M=\frac{x}{0.3} \operatorname{mot} \\
& \mathrm{HCl} \\
& x=0.06 \mathrm{~mol}
\end{aligned}
$$

Determine the ions still in solution after the reaction.

Determine the molarity of the ions in solution after the reaction.

$$
\begin{aligned}
& 300 \mathrm{~mL} \\
& \frac{500 \mathrm{~mL}}{800 \mathrm{~mL}}
\end{aligned} \quad 800 \mathrm{~mL} / \frac{\mathrm{L}}{1000 \mathrm{~mL}}=0.8 \mathrm{~L}
$$

300 mL of 0.2 M KOH is poured into a beaker of 500 mL of 0.1 M HCl . Write the equation, determine the limiting reactant.
Determine the concentration of each ion after the reaction.
Write the equation. Make an ISE table.

$\mathrm{KOH}(\mathrm{aq})+$	$\mathrm{HCl}(\mathrm{aq})$	$\mathrm{HOH}(\mathrm{l})$	+	$\mathrm{KCl}(\mathrm{aq})$
\| 0.06 mol	0.05 mol			
S 0.05 mol	0.05 mol	0.05 mol		0.05 mol
$E \underset{\text { excess }}{0.01 \mathrm{~mol}}$	0	0.05 mol		0.05 mol

Determine moles of reactants and limiting reactant. Fill out ISE.

HCl is the limiting reactant
Determine the ions still in solution after the reaction.

$$
\begin{array}{ccc}
\text { (excess) } \mathrm{KOH} & \mathrm{~K}^{+1}+\mathrm{OH}^{-1} \\
0.01 \mathrm{~mol} & 0.01 & 0.01
\end{array}
$$

aq. product: $\mathrm{KCl} \rightarrow \mathrm{K}^{+1}+\mathrm{Cl}^{-1}$
$0.05 \mathrm{~mol} \quad 0.05 \quad 0.05$

Determine the molarity of the ions in solution after the reaction.

(1.) Ferguivalence all reactant gone/no excess

$$
M=\frac{\operatorname{mol}}{L} 0.1 M=\frac{X \text { mol }}{0.020 L}
$$

$$
x=0.002 \mathrm{~mol}
$$

$$
\mathrm{AgNO}_{3}
$$

(d.) $0.002 \mathrm{~mol} \mathrm{NgNO}_{3} \rightarrow$ need 0.002 mol

$\mathrm{As}^{+} \mathrm{NO}_{3}^{-} \quad \mathrm{Na}^{+} \mathrm{Cl}^{-}$
$\mathrm{As}^{+} \mathrm{NO}_{3}^{-} \quad \mathrm{Na}^{+} \mathrm{Cl}^{-}$

$$
\begin{align*}
& S-0.002+0.002 \mathrm{~mol}+0.002+0.002 \\
& .020 \mathrm{ml} \mathrm{O.1M} \tag{b.}
\end{align*}
$$

\square
(a.)

$$
\begin{aligned}
& \text { (2R) } \\
& \mathrm{NabH} \text { laq } \mathrm{f} \text { + } \mathrm{H}\left(\mathrm{Naqaq}^{2} \rightarrow \mathrm{HOH}(\mathrm{l})+\mathrm{NaCN}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { (5.) } \\
& 0.2 \mathrm{M}=\frac{x \mathrm{~mol}}{0.02 \mathrm{~L}} \\
& 0.1 M=\frac{x \mathrm{~mol}}{0.05 \mathrm{~L}} \\
& x=\begin{array}{ll}
0.004 \\
& \text { mol NaOH }
\end{array} \quad x=0.005 \mathrm{~mol}
\end{aligned}
$$

(c) no solid (creating $\mathrm{NOH}(1)$
(d.) 0

20 mL of $0.5 \mathrm{M} \mathrm{Na} \mathrm{NO}_{4}$ reacts with completely with 25 mL of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ What is the molarity of the $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$?

